

Microbiology in Dutch Geothermal Systems

DAP Symposium 15 October 2021 Ayla Reerink

Introduction

- All Dutch geothermal systems contain bacteria
- Presence of bacteria can have a major impact
 - Surface installation & Well integrity issues
 - Micriobiological induced corrosion (MIC)
 - Injectivity decline
 - Biofouling
 - Scaling through SRP's
 - Reservoir souring
 - Sulphate reducing Prokarioten
 - Forms Sulphides and H₂S

Reservoir	Sample type	Bacteria present
Triassic	Production water	✓
Delft	Production water	✓
Rotliegend	Production water	
Delft	Production water	✓
Rotliegend	Production water	✓
Dinantien	Production water	✓
Brussel	Production water	

Ref: Bioclear projectcode 20177513/1987

Introduction

So how many microbes are in Geothermal Systems?

Introduction

Content

Introduction

Early signs

Advise to operators

Methods to Identify

1. Injectivity decline

Field example 1

Field example 2

VEEGEO Geothermal Energy

Methods to Identify

2. Solids

Difference between surface solids and subsurface solids

Solids found in filter

Solids found in well

Methods to Identify

3. Visual inspection

Table 2:	Results	bacteria	sample	001.
----------	---------	----------	--------	------

Reads nr.	%	Organism	Remarks/isolation source		
91381	60,87%5	Desulfotomaculum halophilum	Sulphate reducing, anaerobic, halophilic, able to grow autotrophically.		
23137	15,41%	Desulfotomaculum geothermicum	Sulphate reducing, anaerobic, able to grow autotrophically /Geothermal ground water		
9403	6,26%	Halanaerobium congolense	Anaerobic, halophilic /petroleum crude oil		
8918	5,94%	Peptostreptococcaceae bacterium Col 11	Anaerobic, often feremtatative /Kao-I.1ei Wetland		
2582	1,72%	Halanaerobium praevalens DSI.1 2228	Salt-loving, anaerobic, some sulphate reducing /Great Salt Lake sediment		
2014	1,34%	Gelria glutamica	Thermophilic, anaerobic, syntrophic /dry anaerobic digester		
1668	1,11%	Halanaerobium lacusrosei	hypersaline lake		
1468	0,98%	Desulfonosporus sp. AAN04	mud volcano		
1396	0,93%	Paenibacillus pocheonensis	biogas Z7 sample		
1252	0,83%	Desulfuribacillus alkaliarsenatis	leachate sediment		
996	0,66%	Marinilabilia nitratireducens			
890	0,59%	Desulfotomaculum sp. BEN12	pit mud		
488	0,33%	Halanaerobium hydrogeniformans	microbial biofuel cell inoculated with iron-reducing culture from sediment		
471	0,31%	Halanaerobium congolense	produced water		
416	0,28%	Desulfotomaculum arcticum	Sea		
296	0,20%	Desulfovibrio putealis			
242	0,16%5	Garciella nitratireducens	thermophilic chicken dung - cow slurry fermentation		
236	0,16%	Desulfotomaculum gibsoniae DSI.1 7213	poplar biomass		
225	0,15%	Peptostreptococcaceae bacterium Col 11 Guerrero Negro Hypersaline J.k altitude 310m Al.ISL; sample de 1m below water level, 2-3mm d into the mat			
208	0,14%	Halanaerobium hydrogeniformans	Lake Fazda sediment		
207	0,14%	Marinilabilia salmonicolor JCM 21150	copper polluted sediment		
		•	•		

1% Biofouling

> Injectivity decline

78% SRP

Reservoir souring, Scaling

~ 20 % MIC

> Well integrity issues

Reads %		Organism	Remarks/isolation source	
91381	60,87%5	Desulfotomaculum halophilum	Sulphate reducing, anaerobic, halophilic, able to grow autotraphically	
23137	15,41%	Desulfotomaculum geothermicum	Sulphate reducing, anaerobic, able to grow autotrophically /Geothermal ground water	
9403	6,26%	Halanaerobium congolense	Anaerobic, halophilic /petroleum crude oil	
8918	5,94%	Peptostreptococcaceae bacterium Col 11	Anaerobic, often feremtatative /Kao-/.1ei Wetland	
2582	1,72%	Halanaerobium praevalens DSI.1 2228	Salt-loving, anaerobic, some sulphate reducing /Great Salt Lake sediment	
2014	1,34%	Gelria glutamica	Thermophilic, anaerobic, syntrophic /dry anaerobic digester	
1668	1,11%	Halanaerobium lacusrosei	hypersaline lake	
1468	0,98%	Desulfonosporus sp. AAN04	mud volcano	
1396	0,93%	Paenibacillus pocheonensis	biogas Z7 sample	
1252	0,83%	Desulfuribacillus alkaliarsenatis	leachate sediment	
996	0,66%	Marinilabilia nitratireducens		
890	0,59%	Desulfotomaculum sp. BEN12	pit mud	
488	0,33%	Halanaerobium hydrogeniformans	microbial biofuel cell inoculated with iron-reducing culture from sediment	
471	0,31%	Halanaerobium congolense	produced water	
416	0,28%	Desulfotomaculum arcticum	Sea	
296	0,20%	Desulfovibrio putealis		
242	0,16%	Garciella nitratireducens	thermophilic chicken dung - cow slurry fermentation	
236	0,16%	Desulfotomaculum gibsoniae DSI.1 7213	poplar biomass	
225	0,15%	Peptostreptococcaceae bacterium Col 11	Guerrero Negro Hypersaline I. lat 03; altitude 310m Al. ISL; sample depth 1m below water level, 2-3mm depth into the mat	
208	0,14%	Halanaerobium hydrogeniformans	Lake Fazda sediment	
207	0,14%	Marinilabilia salmonicolor JCM 21150	copper polluted sediment	

Microbial Community	Relative Abundance (%)	Metabolic Basis	Common Source
Methanobacterium sp.	21%	Archeal, non-motile anaerobic, organic biomass digestors, methane producers	Aquatic Sediments, Soil, Sewage
Desulfotignum sp.	18%	Strictly anaerobic, gram negative bacterium, single polar flagellum. Sulphate reducing prokaryote (SRP) which has the potential to dominate in corrosive communities	Saline and hypersaline waters
Desulfofustis glycolicus	13%	Strictly anaerobic, gram negative club- shaped bacterium, Sulphate reducing prokaryote (SRP), utilises glycolic acid as a key substrate (electron donor and carbon source)	Marine sediments
Desulphovibrio sp.	12%	Anaerobic, motile sulphate reducing prokaryote, inherently linked to MIC processes, abundant in both high-organic material environments as well as in extremely oligotrophic habitat	Marine and freshwater systems
Marinobacter Hydrocarbonoclassicus	11%	Adapt to highly diverse environmental conditions, gram negative rod shaped, motile proteobacteria, hydrocarbon clastic so linked to hydrocarbon degradation	

Ref: SGS

		Microbial Community	Relative Abundance (%)	Metabolic Basis	Common Source
21% Biofouling	├	Methanobacterium sp.	21%	Archeal, non-motile anaerobic, organic biomass digestors, methane producers	Aquatic Sediments, Soil, Sewage
	ı	Desulfotignum sp.	18%	Strictly anaerobic, gram negative bacterium, single polar flagellum. Sulphate reducing prokaryote (SRP) which has the potential to dominate in corrosive communities	Saline and hypersaline waters
31% SRP	<u>}</u>	Desulfofustis glycolicus	13%	Strictly anaerobic, gram negative club- shaped bacterium, Sulphate reducing prokaryote (SRP), utilises glycolic acid as a key substrate (electron donor and carbon source)	Marine sediments
12% MIC		Desulphovibrio sp.	12%	Anaerobic, motile sulphate reducing prokaryote, inherently linked to MIC processes, abundant in both high-organic material environments as well as in extremely oligotrophic habitat	Marine and freshwater systems
		Marinobacter Hydrocarbonoclassicus	11%	Adapt to highly diverse environmental conditions, gram negative rod shaped, motile proteobacteria, hydrocarbon clastic so linked to hydrocarbon degradation	Marine Waters

Ref: SGS

Field learnings

Good controlPreventive actionCorrective action

Industry standard interpretation guide

- High diversity in main species
- No direct relation between different reservoirs
- Huge difference in species within one geothermal system

Sample location	Level of contamination
Flowing water	
Stagnant water	
Sediment top filter	
Sediment bottom filter	
Swab top filter	
Swab bottom filter	

Contamination sources

Sources of contamination:

- Human interaction
 - Introducing contaminated tools into the well
 - Reinjection of produced water
- Reservoir itself

Catalysts:

- Temperature
- Chemicals:
 - Corrosion inhibitors
 - Oxygen scavengers
 - and even biocides....

Treatment options

- 1) Identification of microbes present
- 2) Treatment plan
 - Kill tests
 - Sampling interval & location
 - Growth rate
- 3) Biocidal treatment
 - Type of biocide
 - As far upstream as possible

Early signs

Changes in system response

- Injectivity
- Filter change-out rate
- NORM
- Water analysis

Key factors:

- Iron corrosion product
- Presence of
 - Ironoxide
 - Sulfide
 - Silicon dioxide/Calcium oxide

Advise

Optimise data and sampling analysis protocol including:

- Water analysis should include
 - Sulphate/sulphide
 - Iron
 - Volatile Fatty Acids (VFA's)
 - Total Supspended Solids (TSS)
 - Silt density index (SDI)
- ATP testing on water and bottom filters
- Trending analysis on injection data
- Gas sample analysis
 - Hydrogen (H₂)
 - Hydrogen Sulphide (H₂S)

Conclusion

- Prevention is better than treatment
- 2/3 systems are under control
- Available treatment options good when the following is in place:
 - Representative microbiological analysis
 - Treatment protocol
 - Frequent production analysis

Ayla Reerink Production Engineer

Ayla.Reerink@veegeo.nl

