Creating digital twin for DAPwell project: challenges and solutions

Yang Wang, Denis Voskov*, Phil Vardon

Geoscience & Engineering, TU Delft

Geothermal energy

ŤUDelft

Source: BGS

PDE for Energy Transition applications

$$\boldsymbol{g}(\boldsymbol{\omega}) = \boldsymbol{a}_t(\boldsymbol{\omega},\boldsymbol{\xi}) + \nabla \cdot \boldsymbol{b}(\boldsymbol{\omega},\boldsymbol{\xi}) + \Delta \boldsymbol{c}(\boldsymbol{\omega},\boldsymbol{\xi}) + \boldsymbol{d}(\boldsymbol{\omega},\boldsymbol{\xi}) = 0$$

FIM approach: Finite Volume discretization in space and backward Euler in time

$$\xi = \{G, \phi, K\} \qquad \qquad \omega = \{p, T\}$$

$$g(\boldsymbol{\omega}) = \frac{\phi_0 V}{\Delta t} [\boldsymbol{\alpha}(\boldsymbol{\omega}) - \boldsymbol{\alpha}(\boldsymbol{\omega}_n)] + \sum_l v_t^l \boldsymbol{\beta}(\boldsymbol{\omega}) + V \boldsymbol{\delta}(\boldsymbol{\omega}) = 0$$

$$g_e(\boldsymbol{\omega}) = \frac{\phi_0 V}{\Delta t} [\alpha_e(\boldsymbol{\omega}) - \alpha_e(\boldsymbol{\omega}_n)] + \sum_l v_t^l \beta_e(\boldsymbol{\omega}) + \sum_l \Theta^l (T^l - T) \gamma(\boldsymbol{\omega}) + V \delta(\boldsymbol{\omega}) = 0$$

$$\alpha_{c}(\boldsymbol{\omega}) = c(p) \sum_{j=1}^{n_{p}} x_{cj} \rho_{j} s_{j}, \qquad \beta_{c}(\boldsymbol{\omega}) = \frac{1}{\Lambda} \sum_{j=1}^{n_{p}} x_{cj}^{l} \rho_{j}^{l} \frac{k_{rj}^{l}}{\mu_{j}^{l}}$$
$$\gamma(\boldsymbol{\omega}) = c(p) \sum_{j=1}^{n_{p}} s_{j} \rho_{j} \kappa_{j}, \qquad \delta(\boldsymbol{\omega}) = \sum_{k=1}^{n_{k}} v_{ck} r_{k}$$

ŤUDelft

Operator-Based Linearization

 $\left|\widehat{\beta_c} - \beta_c\right| \le cA^2 \sup_{\omega} |\nabla^2 \beta_c|$

Voskov, JCP 2017

Delft Advanced Research Terra Simulator

- CO₂ injection for EOR
 - 1.1M active blocks, 5.5 years
 - 4 unknowns per block
 - CPU*: 20 min, GPU: 3.5 min
- Geothermal model
 - 3.2M active blocks, 100 years
 - 2 unknowns per block
 - CPU*: 49 min, GPU: 8 min
- CO₂ sequestration
 - 1.0M active blocks, 3000 years
 - 2 unknowns per block
 - CPU*: 3.8 hours, GPU: 55 min

Khait and Voskov, SPE, 2021

How much energy does your geothermal field produce?

Converged Monte-Carlo simulation: 4000 forward runs using geological model takes less than 15 hours on 16 Titan RTX GPU cards^{*}

3.2 M grid blocks, 50 years of simulation

Geological parameters

Physical parameters Economical parameters Technological parameters

*Thanks to SURFsara for the access to the Lisa GPU cluster and for sponsoring DARTS-GPU

Geological model for DAP project

ŤUDelft

Lithology	GR Range
Coarse Sand	GR<30
Fine Sand	30 <gr<60< td=""></gr<60<>
Shaly Sand	60 <gr<100< td=""></gr<100<>
Shale	GR>100

Reinhard, MSc, 2019

7

Sensitivity study for DAP project

Porosity distributions of 4 (out of 10) cases

Distribution of other parameters

Multi-segmented well model

- Multi-physics in wellbore (thermal multiphase multi-component reactive flow and transport with heat loses)
- Complex well network (deviated, multilateral, annulus, etc.)

Near-well modeling

Physics-based proxy

	High fidelity model	DiWA proxy
Control volumes	43,846	283
Control variables	124,169	394
Production data	24*30 days	24*30 days
Single forward run	175 seconds	0.8 seconds

Numerical Gradients	Adjoint Gradients
$J(oldsymbol{\omega},oldsymbol{u})$	$ar{\mathcal{J}}(oldsymbol{\omega},oldsymbol{u},oldsymbol{\lambda}) = J(oldsymbol{\omega},oldsymbol{u}) + oldsymbol{\lambda}^{\mathrm{T}}g(oldsymbol{\omega},oldsymbol{u})$
$\frac{\partial J}{\partial u_1} = \frac{J(\mathbf{u} + \delta_k \varepsilon) - J(\mathbf{u})}{\varepsilon} + O(\varepsilon)$	$ar{\mathcal{J}}_{oldsymbol{\lambda}} = g(oldsymbol{\omega},oldsymbol{u}) = 0.$
$\frac{\partial J}{\partial u_2} = \frac{J(\mathbf{u} + \delta_k \varepsilon) - J(\mathbf{u})}{\varepsilon} + O(\varepsilon)$:	$\bar{\mathcal{J}}_{\boldsymbol{\omega}} = \boldsymbol{\lambda}^{\mathrm{T}} g_{\boldsymbol{\omega}}(\boldsymbol{\omega}, \boldsymbol{u}) + J_{\boldsymbol{\omega}}(\boldsymbol{\omega}, \boldsymbol{u}) = 0$ $\bar{\mathcal{J}}_{\boldsymbol{u}} = \boldsymbol{\lambda}^{\mathrm{T}} g_{\boldsymbol{u}}(\boldsymbol{\omega}, \boldsymbol{u}) + J_{\boldsymbol{u}}(\boldsymbol{\omega}, \boldsymbol{u}) = 0$

Tian et al., SPEJ, 2021

ŤUDelft

348 sec vs. 1.5 sec for one gradient evaluation

Conclusion

- DARTS is a fully integrated numerical framework that combines unique flexibility and performance for forward simulation in energy transition applications
- To optimize the performance and mitigate risks in geothermal projects, extended uncertainty quantification and risk analysis are required
- Current status and ongoing developments in the DARTS framework will allow creating a true digital twin for the DAP project

