

Robert Winsloe robert.winsloe@eavor.com

October 15th, 2021

Hydrothermal vs Closed-Loop

Traditional Geothermal	Closed-Loop
Dpen System: water flows through eservoir, fluid exchange between system & reservoir	Closed System: Working fluid circulates in isolation from reservoir, no fluid exchange
Requires a permeable aquifer & hot convective zone	No need for permeable aquifer
Requires an electric pump to circulate brine; parasitic load	Large scale systems driven by natural thermosiphon, no pumping required
EGS provides an option to increase flow, but also increases risk of induced seismicity	No fracking required, no induced seismicity
Can produce GHG & CO ₂ with produced brine	No GHG or CO ₂
Continuous water use & ongoing treatment required	No water use, no production brine requiring treatment
Baseload, not Dispatchable	Baseload and Dispatchable (if driven by thermosiphon)

C Eavor-Loop[™]

Geothermal Development Options

GAS

OIL

Warm wa

Heat Exchanger

Settling Tank

Overcoming the conduction limitations

Conduction mitigation strategy

Risk mitigation decision tree

Eavor – Risk Mitigation Examples

Eavor-Loop[™] overview

Application

9 5/8"

 X^0

Technology	Heating	Cooling	Power
EL1.0	> 25°C/Km	> 30ºC/Km	> 45°C/Km
EL2.0	> 20ºC/Km	> 25ºC/Km	> 40°C/Km > 25°C/Km (Germany)

Other considerations

Faulting	We want to avoid, or drill parallel to, active/major faults
Sealing	We need to be confident that we will be able to seal the rock in the radiator section
Source potential	Modelling the subsurface determines the power or heat capacity of the geothermal license

Radiator Section
12 laterals per vertical
24 laterals in total, connected in pairs

Eavor-Loop[™] – Geretsried Germany

Background

- 2009-2012: Enex acquired lease and approvals
 - Combined Heat and Power
 - District Heating to town of Geretsried

 Key environmental approvals, stakeholder relationships, infrastructure, offtake in place.

Opportunity Overview

License Area

- Manufacturing-style development
- Modular facilities, economies of scale
- Deployment of Eavor-Loop[™] technology in manufacturing style approach for infrastructure scale heat and power generation

Current Plan (2020 – 2024)

- $\sim 9 \text{ MW}_{e} / 65 \text{ MW}_{th}$
- Initial four (4) Eavor-Loop[™] 1.0 implementations built from single surface location.
- Provision for direct power generation and heat sales to district

Eavor-Loop[™] – Geretsried

Wolfratshausen License Area

Phase 1

Phase 2

Phase 3

Heating, CHP & CCHP

District Heating challenge

- 400,000 people, 180,000 homes
- Water heating 50MW baseload (8760 hours/year)
- Space heating seasonal demand
- Peak load only viable with CHP or CCHP

CHP EL1.0 Case Study - Germany

Robert Winsloe robert.winsloe@eavor.com

October 15th, 2021

Energy For Eavor™

